A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering
نویسندگان
چکیده
A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF) and spectral clustering based approach to subspace clustering. As NMF and many of its variants are essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernelbased orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlinear orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based nonnegative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and introduce a graph regularization to obtain a factorization that respects a local geometric structure of the data after the nonlinear mapping. The proposed NMF-based approach to subspace clustering takes into account the nonlinear nature of the manifold, as well as its intrinsic local geometry, which considerably improves the clustering performance when compared to the several recently proposed state-of-the-art methods.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملNon-negative bases in spectral image archiving
This thesis supposes an application of Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF) and Non-negative Tensor Factorization (NTF) for digital image archiving. It is aimed to develop new efficient methods for spectral image acquisition, compression and retrieval. It hypothesizes that the non-negative bases are more suitable for spectral archiving beside convenient or...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملNonnegative Matrix Factorization on Orthogonal Subspace with Smoothed L0 Norm Constrained
It is known that the sparseness of the factor matrices by Nonnegative Matrix Factorization can influence the clustering performance. In order to improve the ability of the sparse representations of the NMF, we proposed the new algorithm for Nonnegatie Matrix Factorization, coined nonnegative matrix factorization on orthogonal subspace with smoothed L0 norm constrained, in which the generation o...
متن کاملProjective Nonnegative Matrix Factorization: Sparseness, Orthogonality, and Clustering
Abstract In image compression and feature extraction, linear expansions are standardly used. It was pointed out by Lee and Seung that the positivity or non-negativity of a linear expansion is a very powerful constraint, that seems to lead to sparse representations for the images. Their technique, called Non-negative Matrix Factorization (NMF), was shown to be useful in approximating high dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.10323 شماره
صفحات -
تاریخ انتشار 2017